Suppose $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ are orthogonal unit vectors. Let $\mathbf{u} = \mathbf{v} \times \mathbf{w}$. Show that $\mathbf{w} = \mathbf{u} \times \mathbf{v}$ and $\mathbf{v} = \mathbf{w} \times \mathbf{u}$.

Solution

 $\mathbf{u}=\mathbf{v}\times\mathbf{w}$

Take the cross product of both sides with \mathbf{v} and use the first result from part (a) of Exercise 23.

$$\begin{aligned} \mathbf{u} \times \mathbf{v} &= (\mathbf{v} \times \mathbf{w}) \times \mathbf{v} \\ &= (\mathbf{v} \cdot \mathbf{v}) \mathbf{w} - (\mathbf{w} \cdot \mathbf{v}) \mathbf{v} \\ &= (\|\mathbf{v}\| \| \mathbf{v} \| \cos 0) \mathbf{w} - \left(\| \mathbf{w} \| \| \mathbf{v} \| \cos \frac{\pi}{2} \right) \mathbf{v} \\ &= \| \mathbf{v} \|^2 \mathbf{w} \\ &= (1)^2 \mathbf{w} \\ &= \mathbf{w} \end{aligned}$$

Take the cross product of \mathbf{w} with both sides and use the second result from part (a) of Exercise 23.

$$\mathbf{w} \times \mathbf{u} = \mathbf{w} \times (\mathbf{v} \times \mathbf{w})$$

= $(\mathbf{w} \cdot \mathbf{w})\mathbf{v} - (\mathbf{w} \cdot \mathbf{v})\mathbf{w}$
= $(\|\mathbf{w}\| \|\mathbf{w}\| \cos 0)\mathbf{v} - (\|\mathbf{w}\| \|\mathbf{v}\| \cos \frac{\pi}{2})\mathbf{w}$
= $\|\mathbf{w}\|^2\mathbf{v}$
= $(1)^2\mathbf{v}$
= \mathbf{v}