Exercise 46

Suppose $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ are orthogonal unit vectors. Let $\mathbf{u}=\mathbf{v} \times \mathbf{w}$. Show that $\mathbf{w}=\mathbf{u} \times \mathbf{v}$ and $\mathbf{v}=\mathbf{w} \times \mathbf{u}$.

Solution

$$
\mathbf{u}=\mathbf{v} \times \mathbf{w}
$$

Take the cross product of both sides with \mathbf{v} and use the first result from part (a) of Exercise 23.

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =(\mathbf{v} \times \mathbf{w}) \times \mathbf{v} \\
& =(\mathbf{v} \cdot \mathbf{v}) \mathbf{w}-(\mathbf{w} \cdot \mathbf{v}) \mathbf{v} \\
& =(\|\mathbf{v}\|\|\mathbf{v}\| \cos 0) \mathbf{w}-\left(\|\mathbf{w}\|\|\mathbf{v}\| \cos \frac{\pi}{2}\right) \mathbf{v} \\
& =\|\mathbf{v}\|^{2} \mathbf{w} \\
& =(1)^{2} \mathbf{w} \\
& =\mathbf{w}
\end{aligned}
$$

Take the cross product of \mathbf{w} with both sides and use the second result from part (a) of Exercise 23.

$$
\begin{aligned}
\mathbf{w} \times \mathbf{u} & =\mathbf{w} \times(\mathbf{v} \times \mathbf{w}) \\
& =(\mathbf{w} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{w} \cdot \mathbf{v}) \mathbf{w} \\
& =(\|\mathbf{w}\|\|\mathbf{w}\| \cos 0) \mathbf{v}-\left(\|\mathbf{w}\|\|\mathbf{v}\| \cos \frac{\pi}{2}\right) \mathbf{w} \\
& =\|\mathbf{w}\|^{2} \mathbf{v} \\
& =(1)^{2} \mathbf{v} \\
& =\mathbf{v}
\end{aligned}
$$

